Incremental Learning Through Deep Adaptation

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Incremental Learning Through Deep Adaptation

Given an existing trained neural network, it is often desirable to be able to add new capabilities without hindering performance of already learned tasks. Existing approaches either learn sub-optimal solutions, require joint training, or incur a substantial increment in the number of parameters for each added task, typically as many as the original network. We propose a method which fully prese...

متن کامل

Rapid adaptation for deep neural networks through multi-task learning

We propose a novel approach to addressing the adaptation effectiveness issue in parameter adaptation for deep neural network (DNN) based acoustic models for automatic speech recognition by adding one or more small auxiliary output layers modeling broad acoustic units, such as mono-phones or tied-state (often called senone) clusters. In scenarios with a limited amount of available adaptation dat...

متن کامل

Incremental Dictionary Learning for Unsupervised Domain Adaptation

Domain adaptation (DA) methods attempt to solve the domain mismatch problem between source and target data. In this paper, we propose an incremental dictionary learning method where some target data called supportive samples are selected to assist adaptation. The idea is partially inspired by the bootstrapping-based methods [1, 3], which choose from the target domain some samples and add them i...

متن کامل

SVM Incremental Learning, Adaptation and Optimization

The objective of machine learning is to identify a model that yields good generalization performance. This involves repeatedly selecting a hypothesis class, searching the hypothesis class by minimizing a given objective function over the model’s parameter space, and evaluating the generalization performance of the resulting model. This search can be computationally intensive as training data co...

متن کامل

Towards Incremental Learning with Deep Convolutional Networks

Deep neural networks are a powerful class of machine learning models. However they require a lot of time and computational resources to train. We propose to apply an incremental learning approach to train models by utilizing the information present in pre-trained models. We build towards this goal by studying the relationship between network architecture, categories in training data, the amount...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Pattern Analysis and Machine Intelligence

سال: 2020

ISSN: 0162-8828,2160-9292,1939-3539

DOI: 10.1109/tpami.2018.2884462